Abdullah JAA, Salah Eddine L, Abderrhmane B, Alonso-González M, Guerrero A, Romero A. 2020. Green synthesis and characterization of iron oxide nanoparticles by
pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chemistry and Pharmacy 17: 100280. DOI:
https://doi.org/10.1016/j.scp.2020.100280.
Abu-Dahab R, Kasabri V, Afifi FU. 2014. Evaluation of the volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae) on breast cancer cell line models. Records of Natural Products 8: 136-147.
Al-Ghamdi AY. 2017. Soil Microbial Biomass of Pea (
Pisium sativum cv. Little Marvel) in Response to Three Atmospheric Air Regimes at Al Baha Region, KSA. American Journal of Climate Change 6 (4): 607-621. DOI:
https://doi.org/10.4236/ajcc.2017.64031.
Alshammari SO, Mahmoud SY, Farrag ES. 2023. Synthesis of Green Copper Nanoparticles Using Medicinal Plant
Krameria sp. Root Extract and Its Applications. Molecules 28 (12): 4629. DOI:
https://doi.org/10.3390/molecules28124629.
Ameen F, Alsamhary KI, Alabdullatif JA, AL Nadhari S. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety 213: 112027. DOI:
http://dx.doi.org/10.1016/j.ecoenv.2021.112027.
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. 2017. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matterial 29 (20): 203002. DOI:
https://doi.org/10.1088/1361-648x/aa60f3.
Bahmanzadegan A. 2015. Seasonal Variation in Volatile Oil, Polyphenol Content and Antioxidant Activity in Extract of
Laurus nobilis Grown in Iran. Journal of Pharmacy and Pharmacology 3 (5): 223-231. DOI:
http://dx.doi.org/10.17265/2328-2150/2015.05.003.
Bahrami A, Jamzad M, Sedaghat S. 2021. Phytochemicals and Biological Activities of
Froriepia subpinnata (Ledeb.) Baill. Extracts. Journal of Medicinal Plants and By-products 10 (1): 109-115. DOI:
https://doi.org/10.22092/jmpb.2020.352614.1295.
Barrett CS, Massalski TB. 1966. Structure of Metals, 3rded. McCraw-Hill, New York, 251-254.
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. 2020. Nanomaterials in wound healing: from material sciences to wound healing applications. Nano Select 1 (5): 443-460. DOI:
https://doi.org/10.1002/nano.202000055.
Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45 (4): 493-506. DOI:
https://doi.org/10.1093/ajcp/45.4_ts.493.
Beena J, Anjali PS. 2018. Synthesis and characterization of Iron nanoparticles using
Artocarpus heterophyllus Tender leaf extract and evaluation of cytotoxic activity. World Journal of Pharmaceutical Research 7 (2): 657-673. DOI:
http://dx.doi.org/10.20959/wjpr20182-10628.
Berra D, Salah Eddine L, Boubaker B, Mohammed Riha O, Berani D, Achor R. 2018. Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L. leaves extract. Digest Journal of Nanomaterials and Biostructures 13 (4): 1231-1238.
Bulut Kocabas B, Attar A, Peksel A, Altikatoglu Yapaoz M. 2021. Phytosynthesis of CuONPs via
Laurus nobilis: Determination of antioxidant content, antibacterial activity, and dye decolorization potential. Biotechnology and Applied Biochemistry 68 (4): 889-895. DOI:
http://dx.doi.org/10.1002/bab.2010.
Caputo L, Nazzaro F, Souza LF, Aliberti L, De Martino L, Fratianni F, Coppola R, De Feo V. 2017
. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 22 (6): 930. DOI:
https://doi.org/10.3390/molecules22060930.
Da Silveira SM, Luciano FB, Fronza N, Cunha A, Scheuermann GN, Vieira CRW. 2014. Chemical composition and antibacterial activity of
Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT - Food Science and Technology 59 (1): 86-93. DOI:
http://dx.doi.org/10.1016/j.lwt.2014.05.032.
Desalegn T, Murthy HCA, Ravikumar C, Nagaswarupa HP. 2021. Green Synthesis of CuO Nanostructures using
Syzygium guineense (Willd.) DC Plant Leaf Extract and Their Applications. Journal of Nanostructure 11 (1): 81-94. DOI:
https://doi.org/10.22052/JNS.2021.01.010.
Dobroslavić E, Elez Garofulić I, Zorić Z, Pedisić S, Dragović-Uzelac V. 2021. Polyphenolic Characterization and Antioxidant Capacity of
Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes
9: 1840. DOI:
http://dx.doi.org/10.3390/foods11020235.
Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y. 2014. Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine 9 (1): 4007-4021. DOI:
https://doi.org/10.2147/IJN.S57343.
Emami-Karvani Z, Chehrazi P. 2011. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research 5(12): 1368-1377. DOI:
http://dx.doi.org/10.5897/AJMR10.159.
Faisal S, Jan H, Ali Shah S, Shah S, Thea S, Khan A, Rizwan M, Jan F, Wajidullah, Akhtar N, Khattak A, Syed S. 2021. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of
Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 6 (14): 9709-9722. DOI:
http://dx.doi.org/10.1021/acsomega.1c00310.
Faúndez G, Troncoso M, Navarrete P, Figueroa G. 2004. Antimicrobial activity of copper surfaces against suspensions of salmonella enterica and campylobacter jejuni. BMC Microbiology 4: 19. DOI:
http://dx.doi.org/10.1186/1471-2180-4-19.
Fidan H, Stefanova G, Kostova I, Stankov S, Damyanova S, Stoyanova A, Zheljazkov VD. 2019. Chemical Composition and Antimicrobial Activity of
Laurus nobilis L. Essential Oils from Bulgaria. Molecules 24 (4): 804. DOI:
https://doi.org/10.3390/molecules24040804.
Gopalakrishnan K, Ramesh C, Ragunathan V, Tamilselvan M. 2012. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Digest Journal of Nanomaterials and Biostructures 7: 833-839.
Jamzad M, Kamari Bidkorpeh M. 2020. Green synthesis of Iron oxide nanoparticles by the aqueous extract of
Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of nanostructure in Chemistry 10: 193-201. DOI:
http://dx.doi.org/10.1007/s40097-020-00341-1.
Jan H, Shah M, Andleeb A, Faisal S, Khattak A, Rizwan M, Drouet S, Hano C, Abbasi BH. 2021. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of
Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other
In-Vitro Properties. Oxidative Medicine and Cellular Longevity 2021: 4786227. DOI:
http://dx.doi.org/10.1155/2021/4786227.
Kalatehjari P, Yousefian M, Khalilzadeh MA. 2015.
Assessment of antifungal effects of copper nanoparticles on the growth of the fungus
Saprolegnia sp. on white fish (
Rutilus frisii kutum) eggs. The Egyptian Journal of Aquatic Research 41 (4): 303-306. DOI:
http://dx.doi.org/10.1016/j.ejar.2015.07.004.
Kashkouli S, Jamzad M, Nouri A. 2018. Total Phenolic and Flavonoids Contents, Radical Scavenging Activity and Green Synthesis of Silver Nanoparticles by
Laurus nobilis L. Leaves Aqueous Extract. Journal of Medicinal Plants and By-products 1: 25-32. DOI:
https://doi.org/10.22092/jmpb.2018.116725.
Khani R, Roostaei B, Bagherzade G, Moudi M. 2018. Green synthesis of copper nanoparticles by fruit extract of
Ziziphus spinachristi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids 255: 541-549. DOI:
http://dx.doi.org/10.1016/j.molliq.2018.02.010.
Kim JH, Cho H, Ryu SE, Choi MU. 2000. Effects of metals ions on the activity of protein tyrosine phosphate VHR: highly potent and reversible oxidative inactivation by Cu
2+ ion. Archives of Biochemistry and Biophysics 382: 72-80. DOI:
https://doi.org/10.1006/abbi.2000.1996.
Kooti M, Matouri L. 2010. Fabrication of nano-sized cuprous oxide using Fehling’s solution. Transaction F: Nanotechnology 17: 73-78.
Krithiga N, Jayachitra A, Rajalakshmi A. 2013. Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian Journal of Nano Science 1: 6-15.
Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Chu PK, Wu S. 2018. Noninvasive rapid bacteria killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomaterial Science 6 (8): 2110-2121. DOI:
http://dx.doi.org/10.1039/C8BM00499D.
Loo YY, Chieng BW, Nishibuchi M, Radu S. 2012. Synthesis of silver nanoparticles by using tea leaf extract from
Camellia sinensis. International Journal of Nanomedicine 7: 4263-4267. DOI
http://dx.doi.org/10.2147/IJN.S33344.
Luo X, Morrin A, Killard AJ, Smyth MR. 2006. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 18 (4): 319-326. DOI:
https://doi.org/10.1002/elan.200503415.
Marza Hamza N, Malik Yasir S, Abdulsajjad M, Hussain K. 2021. Biological Effects of Aqueous Extract of
Laurus noboilis L. Leaves on Some Histological and Immunological Parameters in Male Rat Liver Affected by Aluminum Chloride. Archive of Razi Institute 76 (6): 1745-1753. DOI:
https://doi.org/10.22092/ari.2021.356361.1827.
Maulana I, Fasya D, Ginting B. 2022. Biosynthesis of Cu Nanoparticles Using
Polyalthia longifolia Roots Extracts for Antibacterial, Antioxidant and Cytotoxicity Applications. Materials Technology 37 (13): 2517-2521. DOI:
http://dx.doi.org/10.1080/10667857.2022.2044217.
Mohammed RR, Omer AK, Yener Z, Uyar A, Ahmed AK. 2021. Biomedical effects of
Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Annals of Medicine and Surgery 61: 188-197. DOI:
https://doi.org/10.1016/j.amsu.2020.11.051.
Ouibrahim A, Tlili-Ait-Kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR. 2013. Evaluation of antibacterial activity of
Laurus nobilis L.,
Rosmarinus officinalis L. and
Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research 7 (42): 4968-4973. DOI:
https://doi.org/10.5897/AJMR2012.2390.
Ozcan B, Esen M, Sangun MK, Coleri A, Caliskan M. 2010. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology 31 (5): 637-641.
Padma PN, Banu TB, Kumari SC. 2018. Studies on green synthesis of copper nanoparticles using
Punica granatum. Annual Research & Review in Biology 23 (1): 1-10. DOI:
http://dx.doi.org/10.9734/ARRB/2018/38894.
Pedram-Nia A, Mortazavi A, Nemat Shahi MM. 2018. Study of Chemical Compounds and The Antimicrobial Effects of Leaf Extract of Laurus nobilis L. on Various Microbial Strains. Journal of Food Science and Technology 15 (81): 217-226.
Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A. 2009. CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surface Coating Technology 204: 54-57. DOI:
https://doi.org/10.1016/J.SURFCOAT.2009.06.028.
Petkova Z, Stefanova G, Girova T, Antova G, Stoyanova M, Damianova S, Gochev V, Stoyanova A,
Zheljazkov VD. 2019. Phytochemical Investigations of Laurel Fruits (
Laurus nobilis). Natural Product Communications 14 (8): 1934578X1986887. DOI:
http://dx.doi.org/10.1177/1934578X19868876.
Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P. 2012. Biosynthesis of antibacterial gold nanoparticles using brown alga, stoechospermum marginatum (kutzing). Spectrochimica Acta-part A 99: 166-173. DOI:
http://dx.doi.org/10.1016/j.saa.2012.08.081.
Ramos C, Teixeira B, Batista I, Matos O, Serrano C, Neng NR, Nogueira MJF, Nunes ML, Marquez A. 2012. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel
Laurus nobilis Linnaeus (Lauraceae) from Portugal, Natural Product Research 26 (6): 518-529. DOI:
http://dx.doi.org/10.1080/14786419.2010.531478.
Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, Rodríguez-Beas C, Larios- Rodríguez E, Navarro RE, Lopez-Esparza R, Iniguez-Palomares RA. 2019. Synthesis of Gold Nanoparticles Using
Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. Nanoscale Research Letters 14 (1): 334. DOI:
https://doi.org/10.1186/s11671-019-3158-9.
Sheet AH, AL-Azawi HA. 2022. Antibiotic susceptibility and biofilm formation of
Pseudomonas aeruginosa isolated from clinical and environmental hospital samples. Biochemical and Cellular Archives 22: 3501-3509. DOI:
http://dx.doi.org/10.51470/bca.2022.22.2.3501.
Shenewer Mahdi Al-Turfi Z, Al-Hadrawy SMJ, Abadi Mohammed J, Chasib Jabal B. 2022. Evaluation of the Effect of Alcoholic Extract of
Laurus Nobilis Leaves on Blood Biochemical Parameters and Histological Changes in the Liver and Kidney among Female Wistar Rats Treated with Depakene (Sodium Valproate). Archive of Razi Instituet 77 (3): 981-989. DOI:
https://doi.org/10.22092/ari.2022.357272.2011.
Siriken B, Yavuz C, Güler A. 2018. Antibacterial Activity of
Laurus nobilis: A review of literature. Medical Science and Discovery 5 (11): 374-379. DOI:
http://dx.doi.org/10.17546/msd.482929.
Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M. 2004. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 25: 2029-2037. DOI:
http://dx.doi.org/10.1016/j.biomaterials.2003.08.061.
Thakur S, Sharma S, Thakur S, Rai R. 2018. Green synthesis of copper nanoparticles using
Asparagus adscendens Roxb. root and leaf extract and their antimicrobial activities. International Journal of Current Microbiology and Applied Sciences 7: 683-694. DOI:
http://dx.doi.org/10.20546/ijcmas.2018.704.077.
Usmani QI, Ahmad A, Jamaldeen FN. 2021.
Laurus nobilis L., (Habb-ul-Ghar), A Review on Phytochemistry, Pharmacology and Ethnomedicinal Uses. Journal of Drug Delivery & Therapeutics 11 (5): 136-144. DOI:
http://dx.doi.org/10.22270/jddt.v11i5.5021.
Vasundhara M, Gujaran S, Jayaram A, Priyanka R. 2016. Sweet bay (Laurus nobilis L.) essential oil: A study on its application in dentistry. Word Journal of Pharmaceutical Research 5: 2049-2057.
Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. 2016.
Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy 84: 1213-1222. DOI:
https://doi.org/10.1016/j.biopha.2016.10.038.
Yilmaz ES, Timur M, Aslim B. 2013. Antimicrobial, Antioxidant Activity of the Essential Oil of Bay Laurel from Hatay, Turkey. Journal of Essential Oil-bearing Plants 16 (1): 108-116. DOI:
http://dx.doi.org/10.1080/0972060X.2013.764158.
Yugandhar P, Vasavi T, Maheswari Devi PU, Savithramma N. 2017. Bioinspired green synthesis of copper oxide nanoparticles from
Syzygium alternifolium (Wt.) Walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience 7: 417-427. DOI:
http://dx.doi.org/10.1007/s13204-017-0584-9.
Zargari A. 1997. Medicinal plants. 7th Edition, Tehran University Publications, Vol. 4, pp. 136.
Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M. 2017. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond), 12 (19): 2403-2422. DOI:
https://doi.org/10.2217/nnm-2017-0173.
Zolfaghari B, Samsam-Shariat S, Ghannadi A. 2013. Chemical composition of volatile oils from the endocarp and hulls of Persian bay laurel fruit: A fragrant herb used in traditional Iranian medicine. Journal of Reports in Pharmaceutical Sciences 2: 1-4.
Zen JM, Hsu CT, Kumar AS, Lyuu HJ, Lin Y. 2004. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129 (9): 841-845. DOI:
http://dx.doi.org/10.1039/b401573h.