Docking effect of Terminalia chebula active ingredients on immune system cell receptors and immune system-responsible receptors in bone marrow mesenchymal cells

Document Type : Research paper

Author

M.Sc., Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Bone marrow mesenchymal cells are responsible for the production of white blood cells, red blood cells, platelets, and plasma and play an important role in the body's immune system. Terminalia chebula has immune-boosting properties, and reports on the effects of Terminalia chebula on the immune system confirm these properties. In order to investigate the effects of Terminalia chebula on the immune system, the main active ingredients of Terminalia chebula were selected and their effects on immune cell receptors and receptors responsible for the immune system in bone marrow mesenchymal cells were evaluated using molecular docking software. Docking results showed that most of the active ingredients of this plant, such as chebulic acid, ethyl gallate, proline, etc., especially the most active ingredient of Terminalia chebula, chebulic acid, have much lower binding energy than non-specific ligands that were randomly selected, on the receptors of immune system cells and the receptors responsible for the immune system in bone marrow mesenchymal cells. To further investigate the two bone marrow receptors ER and PPARγ and their specific ligands Propanenitrile and Glitazone were compared with the ligand chebulic acid and its specific receptor VEGF. The results obtained from molecular docking interactions, such as lower binding energy and inhibition constant and morehydrogen bonds, can confirm the mechanism of the effect of Terminalia chebula on strengthening the immune system.

Keywords


Artusa P, White J. 2024. Vitamin D and its analogs in immune system regulation. Pharmacological Reviews 77 (2): 100032. DOI: https://doi.org/10.1016/j.pharmr.2024.100032.
Baccelli I, Batty C, Biteau K, Drouin M, Evrard B, Gauttier V, Ligeron C, Mary C, Merieau E, Poirier N, Wilhelm E, Saenz J. 2024. CLEC-1 restrains acute inflammatory response and recruitment of neutrophils following tissue injury. Journal of Immunology 212 (7): 1178-1187. DOI: https://doi.org/10.4049/jimmunol.2300479.
Badiei Z, Sholevar F, Asadzadeh A. 2017. Bioinformatics study of the anticancer effect of black seed active ingredient. Fifth National Conference on Innovation and Technology in Life Sciences, Tehran. Available at: https://civilica.com/doc/1425991. (In Farsi)
Bag A, Bhattacharyya SK, Chattopadhyay RR. 2013. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pacific Journal of Tropical Biomedicine 3 (3): 244-252. DOI: http://dx.doi.org/10.1016/S2221-1691(13)60059-3.
Baranauskienė L, Kairys V, Kazlauskienė M, Kazlauskas E, Matulis D. 2019. Binding affinity in drug design: experimental and computational techniques. Expert Opinion on Drug Discovery 14 (8): 755-768. DOI: https://doi.org/10.1080/17460441.2019.1623202.
Biopedia.org. 2020. Hematopoiesis from Pluripotent Stem Cells. Antibodies Resource Library. ThermoFisher Scientific. Available at: https://biopedia.org/Haematopoiesis.
Borges L, Kubin M, Kuhlman T. 2003. LIR9, an immunoglobulin-superfamily-activating receptor, is expressed as a transmembrane and as a secreted molecule. Blood 101 (4): 1484-1486. DOI: https://doi.org/10.1182/blood-2002-05-1432.
Cancrini C, Cifaldi L, Cotugno N, Doria M, Palma P, Rossi P, Zicari S. 2019. DNAM-1 activating receptor and its ligands: How do viruses affect the NK cell-mediated immune surveillance during infection? International Journal of Molecular Sciences 20 (15): 3715. DOI: https://doi.org/10.3390/ijms20153715.
Chapman J, Zhang Y. 2023. Histology, Hematopoiesis. StatPearls [Internet], National Library of Medicine (National Center for Biotechnology Information), Bookshelf ID: NBK534246.
Chopra B, Dhingra A, Grewal A, Guarve K. 2022. Pharmacological properties of Chebulinic acid and related ellagitannins from nature: An emerging contemporary bioactive entity. Pharmacological Research – Modern Chinese Medicine 5: 100163. DOI: https://doi.org/10.1016/j.prmcm.2022.100163.
Chute J, McDonnell D, Ross J. 2009. Minireview: Nuclear receptors, hematopoiesis, and stem cells. Molecular Endocrinology 24 (1): 1-10. DOI: https://doi.org/10.1210/me.2009-0332.
Daoud I, Ghalem S, Mesli F. 2019. Antidiabetic activity of Nigella sativa (black seed): molecular modeling, molecular dynamic, and conceptual DFT investigation. Pharmacophore 10 (5): 57-66.
Dhanda S, Kaur K, Monga I. 2022. Revisiting hematopoiesis: applications of bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells. Briefings in Functional Genomics 21 (3): 159-176. DOI: https://doi.org/10.1093/bfgp/elac002.
Gandomdoust N. 2020. Identification and repositioning of effective medicinal plants in the treatment of fatty liver using a bioinformatics approach. MSc Thesis, Imam Khomeini International University, 68-69. (In Farsi)
Han L, Hu X, Liu H, Gao Y, Leak R, Zhang K, Yang T, Yin K, Zhang X. 2017. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology 163-164: 27-58. DOI: https://doi.org/10.1016/j.pneurobio.2017.10.002.
Hünig T, Köhler C, Lottspeich F, Mitnacht R, Meuer S, Tiefenthaler G. 1987. The “erythrocyte receptor” of T-lymphocytes and T11 target structure (T11TS): complementary cell interaction molecules involved in T-cell activation. Journal of Neuro-Oncology 81: 31-40.
Ishii N, Sugamura K, Soroosh P, Takahashi T. 2010. OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Advances in Immunology 105: 63-98. DOI: https://doi.org/10.1016/S0065-2776(10)05003-0.
ITGA1: ITGA1 integrin subunit alpha 1. 2025. ITGA1 [Gene entry]. National Center for Biotechnology Information (NCBI). Available at: https://pubchem.ncbi.nlm.nih.gov/#query=Integrin%20alpha&tab=protein. (Accessed Nov 19, 2025)
Li D, Chen K, Sinha N, Zhang X, Wang Y, Sinha AK, Romeo F, Mehta JL. 2005. The effects of PPAR-γ ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovascular Research 65 (4): 907-912. DOI: https://doi.org/10.1016/j.cardiores.2004.11.027.
Malhotra H, Singh P. 2017. Terminalia chebula: A Review pharmacognostic and phytochemical studies. International Journal of Recent Scientific Research 8 (11): 21496-21507. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0811.1085.
Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA. 2001. Estrogen Receptor-β potency-selective ligands: structure–activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. Journal of Medicinal Chemistry 44 (24): 4230-4251. DOI: https://doi.org/10.1021/jm010254a.
Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. 2016. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Research & Therapy 7 (1): 97. DOI: https://doi.org/10.1186/s13287-016-0359-3.
Morrison S, Kimble J. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441 (7097): 1068-1074. DOI: https://doi.org/10.1038/nature04956.
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. 2024. Hormones and B-cell development in health and autoimmunity. Frontiers in Immunology 15: 1385501. DOI: https://doi.org/10.3389/fimmu.2024.1385501.
Schote AB, Turner JD, Schiltz J, Muller CP. 2007. Nuclear receptors in human immune cells: Expression and correlations. Molecular Immunology 44 (6): 1436-1445. DOI: https://doi.org/10.1016/j.molimm.2006.04.021.
Seita J, Weissman I. 2010. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2 (6): 640-653. DOI: https://doi.org/10.1002/wsbm.86.
Shin JY, Hu W, Naramura M, Park CY. 2014. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. The Journal of Experimental Medicine 211 (2): 217-231. DOI: https://doi.org/10.1084/jem.20131128.
Yao G, Miao X, Wu M, Lv Z, Bai Y, Chang Y, Ouyang H, and He J. 2023. Pharmacokinetics of active compounds of a Terminalia chebula Retz. ethanolic extract after oral administration in rats using UPLC-MS/MS. Frontiers in Pharmacology 14: 1067089. DOI: https://doi.org/10.3389/fphar.2023.1067089.